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Abstract

A hybrid numerical algorithm of the Laplace transform technique and finite-difference method with a sequential-in-
time concept and the least-squares scheme is proposed to predict the unknown surface temperature of two-sided
boundary conditions for two-dimensional inverse heat conduction problems. In the present study, the functional form
of the estimated surface temperatures is unknown a priori. The whole time domain is divided into several analysis sub-
time intervals and then the unknown surface temperatures in each analysis interval are estimated. To enhance the
accuracy and efficiency of the present method, a good comparison between the present estimations and previous results
is demonstrated. The results show that good estimations on the surface temperature can be obtained from the transient
temperature recordings only at a few selected locations even for the case with measurement errors. It is worth men-
tioning that the unknown surface temperature can be accurately estimated even though the thermocouples are located
far from the estimated surface. Owing to the application of the Laplace transform technique, the unknown surface
temperature distribution can be estimated from a specific time. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Quantitative understanding of the heat transfer pro-
cesses occurring in industrial applications requires ac-
curate knowledge of internal heat sources, the thermal
properties of the material or surface conditions. In
practical situations these unknown quantities are to be
determined from transient temperature measurements or
transient displacement measurements at one or more
interior locations. These measurements can be fitted and
then the unknown quantities may be estimated. Such
problems are called inverse problems which have be-
come an attractive subject recently. To date, various
methods have been developed for the analysis of the
inverse heat conduction problems involving the estima-
tion of surface conditions from measured temperatures
inside the material [1-14]. However, most analytical and
numerical methods were only employed to deal with
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one-dimensional inverse heat conduction problems
(IHCP). Few works were presented for two- or three-
dimensional IHCP because the difficulty of these prob-
lems was more pronounced.

The literature reviews showed that Sparrow et al. [2],
Woo and Chow [3], Monde [4], Chen and Chang [13]
and Chen et al. [14] have applied the Laplace transform
method to predict the unknown surface conditions from
temperature measurements only. It can be found that
the methods proposed by Sparrow et al. [2] and Woo
and Chow [3] were only limited to some simple linear
inverse heat conduction problems. Their results have
good accuracy only for short time. Thus their range of
applications was limited. Imber [5] obtained an analyt-
ical solution of the two-dimensional IHCP. Other nu-
merical methods for IHCP have been proposed
including the dynamic programming method investi-
gated by Busby and Trujillo [6], the finite element
method applied by Krutz et al. [7], the boundary element
method in conjunction with the Beck’s sensitivity anal-
ysis and least-squares method presented by Zabaras and
Liu [8]. Subsequent works of Yang and Chen [9], Yang
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Nomenclature

C; undetermined coeflicient

Fi,F, estimated functions

{f} force matrix

J number of thermocouples

[k] global conduction matrix

L side length of a square plane plate

4., ¢, distance between two neighboring nodes in the
x- and y-direction

M number of discrete measurement times

n number of measurements

ne,n, number of nodes in the x- and y-direction

s Laplace transform parameter
T temperature

t dimensionless time

t; dimensionless final time

x,y  dimensionless spatial coordinates

Greek symbols

o thermal diffusivity

T transformed dimensionless temperature

{T} global dimensionless temperature matrix in
the transform domain

a* standard deviation of the mean

w averaged random error

[10,11] and Hsu et al. [12] applied the finite-difference
method in conjunction with the linear least-squares
method to estimate the one-sided and two-sided
boundary conditions in two-dimensional THCP. It is
worth noting that the functional form of the estimated
surface temperature is given a priori for these works and
then the unknown surface temperature was parameter-
ized. Thus a few measurement locations can be sufficient
to estimate the unknown surface temperature. However,
the effect of the measurement errors on the estimated
surface temperature cannot be neglected.

Chen and Chang [13] have used the hybrid applica-
tion of the Laplace transform technique and the finite-
difference method to estimate the unknown surface
temperature in one-dimensional IHCP using measured
nodal temperatures inside the material at any specific
time without measurement errors. Recently, Chen et al.
[14,15] and Chen and Lin [16] applied the above scheme
in conjunction with a sequential-in-time concept and the
least-squares method to estimate the unknown surface
conditions and thermal properties of the tested material
from temperature measurements only. It can be ob-
served from the work of Chen et al. [14] that the esti-
mated surface temperatures are in good agreement with
the exact results of the direct problem for various cases.
To further demonstrate the accuracy and efficiency of
the method proposed by Chen et al. [14] in estimating
the surface temperature from temperature measure-
ments, the present problem is investigated and a com-
parison between the present estimates and the results
given by Yang [10] is also made. In performing the nu-
merical simulation of the present study, the functional
form of the surface temperatures is unknown a priori.
The whole time domain is divided into several analysis
sub-time intervals and then the surface temperatures in
each analysis interval are estimated. The computational
procedure for the estimation of the surface temperatures
is performed repeatedly until the sum of the squares of
the deviations between the calculated and measured
temperatures is minimum.

In experiments, the measurement of temperature is,
in general, somewhat inaccurate. This may be due to
human error, but more often, it is due to inherent lim-
itations in the equipment being used to make the mea-
surements. The IHCP is typically sensitive to
measurement errors. Equivalently, slight measurement
errors can affect the accuracy of estimated surface con-
ditions. Thus the effect of measurement errors on the
estimation of the surface temperature will be investi-
gated in the present analysis.

2. Mathematical formulation

A square plane plate with the length of the side L
shown in Fig. 1 is considered. The initial temperature is
T For time ¢ > 0, the boundaries at x* = 0 and y* = L
are kept insulated. For the direct heat conduction
problem, the temperature field in the plane plate as a
function of space and time can be determined provided
that the surface temperatures at x* =L and y* =0 are

oT
A —=0
oy
1
Ty
0ox T=F(y,1)
() »
0 X
T = F,(x,1)

Fig. 1. Geometry of two-dimensional plane plate.
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given. On the contrary, the surface temperatures at
x* =L and y* = 0 need to be estimated unless additional
information on temperature in the slab is given. For
convenience of numerical analysis, the following di-
mensionless parameters are introduced:

T x* v ar

X =— y ==

T : , ;=7
Ty L L L2

(1)

where 7% denotes the plate temperature. o is the thermal
diffusivity of the plate.

In order to compare with the results of Yang [10], the
dimensionless form of a two-dimensional heat conduc-
tion problem in the Cartesian coordinate system with
the dimensionless parameters in Eq. (1), as shown in Fig.
1, is given by

6T762T+62T mo<x<l, 0<y<1
o a2 TR Usssn 2)
0<t<t

with the dimensionless boundary conditions

T:Fi(yat) atx=1, (3)
T:B(X,t) aty:07 (4)
T
%x:o at x = 0, (5)
or
5 =0 =1 (6)

and the dimensionless initial condition

T=0 fort=0, (7)

where #; is the dimensionless final time for temperature
measurements. The continuous surface temperature
functions Fi(y,¢) and F>(x,?) in Egs. (3) and (4) should
be the time-and-space distribution. These unknown
functions will be estimated from some interior tem-
perature measurements.

To estimate the unknown functions Fi(y,t) and
Fy(x,t), the additional information of discrete tempera-
ture measurements is required. Thus the temperature
histories at some locations are measured in the plane
plate. It is assumed that J thermocouples are used to
record the temperature information at these selected
locations, as shown in Table 1. The temperature his-
tories taken from the thermocouples at successive spe-
cific dimensionless time ¢, are denoted by 77, i =1,
...,J,and m=1,...,M, where M denotes the number
of the discrete measurement times. The temperature
histories measured by these thermocouples will be used
to estimate Fi(y,¢) and F>(x,1).

Because of experimental uncertainty, more realistic
measurements should add simulated small random er-
rors to the exact data, 77, obtained from the solution
of the direct problem. Thus the measured data, 7},
should be modified by adding small random errors to

Table 1
Measurement locations of the present study and Yang [10]

Yang [10] (x,)

Present study

Case A (x,y) Case B (x,y)

(0.7, 0.2) (0.7, 0.2) (0.8, 0.8)
0.8, 0.3) (0.8, 0.3) 0.2, 0.2)
(0.8, 0.2) (0.6, 0.2) (0.2, 0.4)
(0.6, 0.2) (0.8, 0.4) (0.6, 0.8)
(0.8, 0.4) (0.8, 0.5) (0.4, 0.8)
(0.8, 0.5) (0.5, 0.2) (0.2, 0.6)
(0.5, 0.2)

simulate experimental measurements. 7" used in the
present inverse analysis can be expressed as

e =T (14 w), m=1,...,M, ®)

where o represents the averaged random error and is
assumed to be within —0.05 to 0.05 in the present study.
¢* is the standard deviation of the mean with respect to
the exact data and is defined as [17]

M

12
0*—[2(2?3?—2?;“)2} /M7 i=1,....J. (9

m=1

In real industrial applications, the actual measured
profiles often exhibit random oscillations owing to
measurement errors. Thus a polynomial function can be
used to fit these measured data using the least-squares
scheme [17].

In order to remove the time-dependent terms from
the governing differential Eq. (2) and boundary condi-
tions (3)—(6) with the initial condition (7), the method of
the Laplace transform is employed [13-16,18,19].

The Laplace transform of a function ¢(¢) is defined
as follows:

é(s) = / " pyedr, (10)

where s is the Laplace transform parameter. The La-
place transform of Egs. (2)—(6) gives

T T - :

@wLa—yzfsT:O m0<x<l1, 0<y<1 (11)
and

T=F(ys) atx=1, (12)
T =F(x,s) aty=0, (13)
oT

—=0 atx=0, (14)
X

or

— =0 =1. 1
o aty (15)

The discretized forms of Egs. (11)-(15) obtained by
using the central-difference approximation, are, re-
spectively, given as:



18 H.-T. Chen et al. | International Journal of Heat and Mass Transfer 45 (2002) 15-23

Tiy1p + T,zk + i1k " Tjps1 + T,zk + Tjr-1 _ sf}‘k,
G e (16)

J:1121"'7nx7 k:1727"'7ny

and

T =Fl(k—1t,s], k=12...n, (17)
[y =B — Desl, j=1,2,....n, (18)
Tox=Tox, k=1,2,....n, (19)
Tt = Tty J=1,2,..0,m, (20)

where n, and n, indicate the number of nodes along the
x- and y-direction, respectively. ¢, and ¢, respectively
designate the distance between two neighboring nodes in
the x- and y-direction and are uniform. Their values are
6=1/(n,—1)and ¢, =1/(n, — 1).

The rearrangement of Eqs. (16)-(20) gives the fol-
lowing vector-matrix equation.

KT} = {1}, 1)

where [k] is an n, x n, matrix, {T} is an n, x 1 matrix
representing the unknown dimensionless nodal temper-
atures in the s domain and {/} is an n, x 1 matrix. The
Gaussian elimination algorithm and the numerical in-
version of the Laplace transform [20] are applied to in-
vert the temperature in the s domain 7 to that in the
physical quantity 7. The advantage of the present
method is that the estimation of the unknown surface
temperatures at a specific time does not need to proceed
with step-by-step computation from the initial
measurement time ¢,.

The unknown functions F(y,¢) and F>(x,?) are diffi-
cult to be fitted by a polynomial function for the whole
time domain considered. Thus the time domain f, <t < ¢
will be divided into some analysis intervals where ¢, is
the initial measurement time. Owing to the application
of the Laplace transform in the present study, #, is not
always the initial time. This implies that the approxi-
mations of the unknown surface temperatures are car-
ried out by discretizing the unknown functions F(y, t)
and F>(x,¢) in Egs. (3) and (4). Under this circumstance,
a sequential-in-time procedure is introduced to estimate
the unknown surface temperatures. Assume that the
dimensionless measurement time step Az, is
At, = (tr — tp)/M. The discrete time coordinate ¢, is
tw =tg+mAt, (m=1,2,...,M). Each of the analysis
intervals in the present study is assumed to be
tn1 <t<t,. In this work the polynomial forms are
proposed for smoothing the noisy measured tempera-
tures on each analysis sub-time interval before per-
forming the inverse calculation. In addition, F(y,¢) and
F5(x,t) are also approximated as:

P
= Z(Cz(zi—])—l + C2(2i71)+1t)y1717 (22)

i=1

P
:Z(Cz(zz + Coit yi2d)x' - (23)

i=1

where {Cy, C, ..., Cy,} are the unknown coefficients and
are estimated simultaneously for each analysis interval.
The number of thermocouples, J, is equal to 2p.

The least-squares minimization technique is applied
to minimize the sum of the squares of the deviations
between the calculated and curve-fitted temperature
measurements taken from the ith thermocouple at
t=t,1 and t=1t,. The error in the estimates
E(Cy,Cy,...,Cyp)

m 2p

=2 Sm-m]

n=m—1 i=1

E(C,C, ...

form=1,2,... M

is to be minimized. 75", i = 1,2,...,2p, is obtained from
the curve-fitted profile of temperature measurements
taken from the ith thermocouple at ¢ = #,. The estimated
values of C; are determined until the value of
E(C,,Cs,. .., Cy,) is minimum. The computational pro-
cedures for estimating the unknown coefficients C; are
described as follows.

First, the initial guesses of C; can be arbitrarily
chosen. Accordingly, the calculated temperature taken
from the ith thermocouple at the dimensionless time

, T% can be determined from Eq. (21). Differences

in?

between T and Tl.“jz‘l at t = ¢, are expressed as

7T,L:1 T;c:r
’ (25)
fori=1,2,....2p and n=m — 1, m.

The new calculated temperature Tf:” can be expanded in
a first-order Taylor series as

9T,
oY =1 4 M dc;
— oC; (26)
for i = 1,2,...,2p and n=m— 1, m.

To obtain the derivative 07;,/0C;, the new estimated
coefficient C is introduced as

C;‘:Cjer/é/k forj,k: 1,2,...,4}7, (27)

where d; = C7 — C; denotes the correction for j = k. The
symbol 5,k is the Kronecker delta and is defined as

5. — 1 if j=k,
ATV0 if j £k

Accordingly, the new calculated temperature 7 with
respect to C; given by Eq. (27) can be determined from
Eq. (21). Differences between T and TS" can be
written as
e(’ _ Tcal J T(,ur
(28)
fori=1,2,....2p and n=m — 1, m.
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The finite difference representation of the derivative
07;,/0C; can be expressed as
o T T

"TeG T GG (29)

fori=1,2,...

,2p and n=m — 1, m.

The substitution of Egs. (24), (27) and (28) into Eq. (29)
yields

o}, = (e, — ) /d;
‘for i(z 1,2,. ){2;9 and n=m—1,m. (30)
Thus Eq. (26) can be rewritten as
™ cal «
J=rel g Z o), d; an)
fori=1,2,....2p and n=m — 1, m,
where d; = dC; denotes the new correction with respect

to the values of C;.
Substituting Eq (31) into Eq. (28) in conjunction
with Eq. (25) yields

—em+ w{nd‘
for1712 L2pand n=m—1,m.

As shown in Eq. (24), the error in the estimates
E(Cl + AC’]7 G+ AC27 ey C4p + AC4P) can be ex-

pressed as
m 2p
i \2
E= ) > ()" (33)
n=m—1 i=1

To yield the minimum value of E with respect to C;,
differentiation of E with respect to the new correction d;
will be performed. Thus the correction equations cor-
responding to the values of C; can be expressed as

m
§ : § : § :a)kn(ukn -

j=1 n=m-1 k=

i=1,2,...,4p.

m

- Z( n€jn>

n=m-1 j= (34)

Eq. (34) is a set of 4p algebraic equations for the new
corrections. The new correction d; can be obtained by
solving Eq. (34). Thereafter, the new estimated coef-
ficients can be determined. The above procedures are
repeated until the differences between T and T are
all less than 104,

3. Results and discussion

It can be found from [14] that the present method for
estimating the surface temperatures from temperature

measurements has very good accuracy. However, to
further demonstrate the accuracy and efficiency of this
method, the present problem is investigated and a
comparison between the present estimates and results
given by Yang [10] is also made. All the computations
are performed on the PC. The present numerical results
are obtained by using # =0.1, ¢, =0.3, M = 10,
At, =0.02, J =6, p=3, nx_ny—ll and ¢, ={(, =
0.1. The 1n1t1al guess of {Cy,Cy,...,Cpp}is {1,1,.. 1}
The unknown boundary conditions shown in [10] are
illustrated as follows:

T(1,y,f) = Fi(y,t) = 1 +0.2¢ 4+ 0.5y + 0.2)* + 0.3y1,
(35)

T(x,0,8) = Fy(x,£) = 1.5+ 0.5¢ 4+ 0.1x + 0.3x* + 0.4xz.
(36)

Yang [10] applied seven-point measurements to obtain
10 unknown coefficients. In order to validate the present
numerical method, the present results obtained by using
six-point measurements are compared with those of
Yang [10] using seven-point measurements. Yang [10]
did not investigate the effect of the measurement loca-
tions on the estimates. Thus the present study uses two
different sets of the measurement locations to predict the
unknown surface temperatures and investigates the ef-
fect of the measurement locations on the estimates.
Table 1 shows the measurement locations given by the
present study and Yang [10]. Six measurement locations
of Case A in the present study are chosen from the
measurement locations given by Yang [10]. The
measurement locations of Case B are farther away from
the estimated surface than those listed in the work of
Yang [10]. The present problem in [10] can be regarded
as an inverse problem of parameter estimation. In other
words, the functional forms of the unknown surface
temperatures in [10] were given in advance and unknown
parameters were estimated by the inverse analysis. But,
in the present study, the functional forms of the un-
known surface temperatures are unknown a priori. Thus
the functional forms, as shown in Egs. (22) and (23), are
applied to estimate the unknown surface temperatures in
each analysis sub-time interval.

Figs. 2 and 3 respectively show the comparison of the
surface temperature distributions of 7(1,y,0.15) and
T(x,0,0.15) between the exact results and the present
estimated results using the measurement points of Case
B shown in Table 1 for w = 0. Results show that the
present numerical scheme has good accuracy even
though thermocouples are located far away from the
positions of the unknown boundary conditions. It can
be found that Yang [10] did not show the inverse solu-
tion for larger values of time and only showed the esti-
mates for the small value of time, such as 7(1,y,0.15)
and 7T'(x,0,0.15). To further evidence the accuracy and
efficiency of the present method, a comparison between
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y

Fig. 2. Comparison of T(1,y,0.15) between the present esti-
mate and exact result for Case B and o = 0.

the present estimates 7°(x, 0,¢) and 7%'(1, y, ¢) using the
measurement points of Case B and the exact values for
@ = 3% and 5% at t = 0.15 and 0.3 are shown in Tables
2 and 3. It can be found that the present estimates
T°'(x,0,¢) and T*'(1,y,t) are in good agreement with
the exact values 7°**(x,0,¢) and 7**(1,y, ). In addition,
the present estimates exhibit stable behavior and do not
deviate from the exact results for w = 3% and 5% at
t = 0.15 and 0.3. This implies that the present estimated
values do not change apparently with the measurement
locations. The average square error between the esti-
mated values and exact solutions is around 0.1% for
w = 0%.

The surface temperature distributions of 7'(1,y,0.15)
and T'(x,0,0.15) shown in Figs. 4 and 5 are obtained by

Table 2

4.00 T T T T T T T T T
- Case B -
2.00 | _ —
a I 1
S 0.00 —
=
z L 4
2.00 — —
S Exact
- - 3¢~ Estimated i
-4.00 L | L | L 1 ! | L
0.00 0.20 0.40 0.60 0.80 1.00

X

Fig. 3. Comparison of 7T(x,0,0.15) between the present esti-
mate and exact result for Case B and o = 0.

using the measurement points of Case A shown in
Table 1. To investigate the effect of the measurement
error on the estimates, a comparison of the surface
temperature  distributions of  7(1,y,0.15) and
T(x,0,0.15) between the present estimated results using
six thermocouples and the results of Yang [10] using
seven thermocouples for various w values is made, as
shown in Figs. 4 and 5. It appears from these figures
that the results of Yang [10] exhibit unstable behavior
for larger w values (i.e., ® = 3% and 5%) and deviate
from the exact results. Conversely, the present estimates
perform stable behavior for these @ values at ¢t = 0.15.
It can be found from Figs. 2, 3, 4(b) and 5(b) that the
differences between the exact results and the present
estimated results using the measurement locations of

Present estimates of 7'(x,0,¢) for various w and ¢ values with respect to Cases A and B

X

0.0 0.2 0.4 0.6 0.8 1.0
T (x,0,1) t=0.15 1.575 1.619 1.687 1.779 1.895 2.035
1=03 1.650 1.706 1.786 1.890 2018 2.170
T4(x,0, 1)
Case A 1=0.15 o = 0% 1.574 1.618 1.686 1.779 1.896 2.036
o= 3% 1.586 1.630 1.699 1.791 1.907 2.047
o= 5% 1.581 1.635 1.708 1.798 1.907 2.034
1=03 o = 0% 1.640 1.701 1.785 1.890 2018 2.169
o = 3% 1.650 1.705 1.786 1.892 2.024 2.182
w=5% 1.644 1.682 1.756 1.866 2012 2.194
Case B 1=0.15 o = 0% 1.560 1.621 1.694 1.780 1.879 1.990
= 3% 1.556 1.622 1.693 1.767 1.846 1.928
o =% 1.547 1.624 1.699 1.773 1.846 1918
1=03 w = 0% 1.645 1.707 1.788 1.887 2.006 2.144
o= 3% 1.645 1.706 1.786 1.886 2.004 2.142
o =% 1.643 1.705 1.785 1.886 2.005 2.144
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Table 3
Present estimates of 7(1,y,¢) for various @ and ¢ values with respect to Cases A and B
y
0.0 0.2 0.4 0.6 0.8 1.0
T (1,,1) t=0.15 1.030 1.147 1.280 1.429 1.594 1.775
t=03 1.060 1.186 1.328 1.486 1.660 1.850
(1, y,1)
Case A t=0.15 o =0% 1.024 1.146 1.280 1.428 1.589 1.764
o =3% 1.032 1.148 1.280 1.430 1.597 1.781
o =5% 1.027 1.156 1.296 1.448 1.612 1.787
t=03 o= 0% 1.057 1.185 1.328 1.485 1.657 1.843
o =3% 1.070 1.190 1.327 1.483 1.658 1.851
=5% 1.072 1.178 1.306 1.457 1.629 1.824
Case B t=0.15 = 0% 1.049 1.159 1.287 1.431 1.593 1.773
o =3% 0.992 1.156 1.311 1.458 1.595 1.724
o =5% 1.141 1.195 1.288 1.419 1.590 1.799
t=03 o= 0% 1.053 1.190 1.338 1.494 1.661 1.836
o =3% 1.046 1.186 1.335 1.493 1.660 1.835
o =5% 1.047 1.185 1.333 1.490 1.659 1.837
4 T T )
S o -
1 r ]
S ke e i
= &
] 0 r = -
= <
: L b —6— EBxact _ » 0.00 —
—8 - Esimated o q E
e — 0~ - Estimated  w=3% —S—  Exact
- <% - - Estimated  w= 3% -2.00 - E} Estmated w=1%
3 r n —=— Estimated @ =3%
) | L | | —> = Estimated @ =5%
. I L ! ) ! . ] )
0 0.2 0.4 0.6 0.8 9800 0.20 0.40 0.60 0.80 1.00
(a) y (b) y

Fig. 4. (a) Comparison of T(1,y,0.15) between exact results and estimates of Yang [10] for Case A and various  values. (b)
Comparison of 7(1,y,0.15) between present estimates and exact results for Case A and various w values.

Case A and Case B are small. The foregoing compari-
son further shows that the effect of the measurement
locations on the estimates is small for the present
method.

We also apply other three different sets of the initial
guesses, such as {C},Cy,...,Cpn}={05,05,...,
0.5}, {0.8,0.8,...,0.8} and {2,2,...,2}, to predict the
unknown surface temperatures 7'(1,y,¢) and T(x,0,1).
Their results are not shown in this manuscript because
they agree well with those using the initial guess of
{1,1,...,1}. The above statements imply that the effect
of the initial guesses on the accuracy of the estimates is
not significant for the present method.

4. Conclusions

The hybrid application of the Laplace transform and
the FDM in conjunction with the least-squares scheme
and a sequential-in-time concept is successfully applied
to estimate the unknown surface temperatures from
temperature data measured at any location in a plate.
The functional form of the unknown surface tem-
peratures is unknown a priori. Owing to the application
of the Laplace transform, the present method is not a
time-stepping procedure. Thus the unknown surface
temperature distributions at any specific analysis sub-
time interval can be predicted from the temperature
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Fig. 5. (a) Comparison of T(x,0,0.15) between exact results and estimates of Yang [10] for Case A and various w values. (b)
Comparison of T(x,0,0.15) between present estimates and exact results for Case A and various w values.

measurements inside the plate without any step-by-step
computations from ¢ = #,. The present estimates exhibit
stable behavior for various @ values and agree with the
exact results even though measuring points are located
far from the positions of the estimates. Results also
show that the effect of the initial guesses on the accuracy
of the estimates is not significant for the present method.
A small effect of the measurement locations on the es-
timates can be observed from the present study. This
implies that the present hybrid method offers a great
deal of flexibility for the inverse heat conduction prob-
lems.
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